Domination and Signed Domination Number of Cayley Graphs

Ebrahim Vatandoost, Fatemeh Ramezani*
Department of Basic Science, Imam Khomeini International University, Qazvin, Iran.
E-mail: vatandoost@sci.ikiu.ac.ir
E-mail: ramezani@ikiu.ac.ir

Abstract

In this paper, we investigate domination number as well as signed domination numbers of $\operatorname{Cay}(G: S)$ for all cyclic group G of order n, where $n \in\left\{p^{m}, p q\right\}$ and $S=\{k<n: \operatorname{gcd}(k, n)=1\}$. We also introduce some families of connected regular graphs Γ such that $\gamma_{S}(\Gamma) \in\{2,3,4,5\}$.

Keywords: Cayley graph, Cyclic group, Domination number, Signed domination number.

2000 Mathematics subject classification: 05C69, 05C25

1. Introduction

By a graph Γ we mean a simple graph with vertex set $V(\Gamma)$ and edge set $E(\Gamma)$. A graph is said to be connected if each pair of vertices are joined by a walk. The number of edges of the shortest walk joining v_{i} and v_{j} is called the distance between v_{i} and v_{j} and denoted by $d\left(v_{i}, v_{j}\right)$. A graph Γ is said to be regular of degree k or, k-regular if every vertex has degree k. A subset P of vertices of Γ is a k-packing if $d(x, y)>k$ for all pairs of distinct vertices x and y of P [9].

[^0]Let G be a non-trivial group, S be an inverse closed subset of G which does not contain the identity element of G, i.e. $S=S^{-1}=\left\{s^{-1}: s \in S\right\}$. The Cayley graph of G denoted by $\operatorname{Cay}(G: S)$, is a graph with vertex set G and two vertices a and b are adjacent if and only if $a b^{-1} \in S$. The Cayley graph $\operatorname{Cay}(G: S)$ is connected if and only if S generates G.
A set $D \subseteq V$ of vertices in a graph Γ is a dominating set if every vertex $v \in V$ is an element of D or adjacent to an element of D. The domination number $\gamma(\Gamma)$ of a graph Γ is the minimum cardinality of a dominating set of Γ.

For a vertex $v \in V(\Gamma)$, the closed neighborhood $N[v]$ of v is the set consisting v and all of its neighbors. For a function $f: V(\Gamma) \rightarrow\{-1,1\}$ and a subset W of V we define $f(W)=\sum_{u \in W} f(u)$. A signed dominating function of Γ is a function $f: V(\Gamma) \rightarrow\{-1,1\}$ such that $f(N[v])>0$ for all $v \in V(\Gamma)$. The weight of a function f is $\omega(f)=\sum_{v \in V} f(v)$. The signed domination number $\gamma_{S}(\Gamma)$ is the minimum weight of a signed dominating function of Γ. A signed dominating function of weight $\gamma_{S}(\Gamma)$ is called a $\gamma_{S}(\Gamma)$-function. We denote $f(N[v])$ by $f[v]$. Also for $A \subseteq V(\Gamma)$ and signed dominating function f, set $\{v \in A: f(v)=-1\}$ is denoted by A_{f}^{-}.
Finding some kinds of domination numbers of graphs is certainly one of the most important properties in any graph. (See for instance $[2,3,5,6,11,13]$)

These motivated us to consider on domination and signed domination number of Cayley graphs of cyclic group of orders $p^{n}, p q$, where p and q are prime numbers.

2. Cayley Graphs of Order p^{n}

In this section p is a prime number and $B(1, n)=\{k<n: \operatorname{gcd}(k, n)=1\}$.
Lemma 2.1. Let G be a group and H be a proper subgroup of G such that $[G: H]=t$. If $S=G \backslash H$, then $\operatorname{Cay}(G: S)$ is a complete t-partite graph.

Proof. One can see $G=\langle S\rangle$ and $e \notin S=S^{-1}$. Let $a \in G$. If $x, y \in H a$, then $x=h_{1} a, y=h_{2} a$. Since $x y^{-1} \in H, x y \notin E(\operatorname{Cay}(G: S))$. So induced subgraph on every coset of H is empty. Let $H a$ and $H b$ two disjoint cosets of H and $x \in H a, y \in H b$. Hence, $x y^{-1} \in S$. So $x y \in E(\operatorname{Cay}(G: S))$. Therefore, $\operatorname{Cay}(G: S)=K_{|H|,|H|, \cdots,|H|}$.

Lemma 2.2. Let G be a group of order n and $G=\langle S\rangle$, where $S=S^{-1}$ and $0 \notin S$. Then $\gamma(\operatorname{Cay}(G: S))=1$ if and only if $S=G \backslash\{0\}$.

Theorem 2.3. [13] Let $K_{a, b}$ be a complete bipartite graph with $b \leq a$. Then

$$
\gamma_{S}\left(K_{a, b}\right)= \begin{cases}a+1 & \text { if } b=1, \\ b & \text { if } 2 \leq b \leq 3 \text { and } a \text { is even, } \\ b+1 & \text { if } 2 \leq b \leq 3 \text { and } a \text { is odd }, \\ 4 & \text { if } b \geq 4 \text { and } a, b \text { are both even, } \\ 6 & \text { if } b \geq 4 \text { and } a, b \text { are both odd, } \\ 5 & \text { if } b \geq 4 \text { and } a, b \text { have different parity. }\end{cases}
$$

Theorem 2.4. Let $\mathbb{Z}_{2^{n}}=\langle S\rangle$ and $S=B\left(1,2^{n}\right)$. Then
i. $\operatorname{Cay}\left(\mathbb{Z}_{2^{n}}: S\right)=K_{2^{n-1}, 2^{n-1}}$
ii. $\gamma\left(\operatorname{Cay}\left(\mathbb{Z}_{2^{n}}: S\right)\right)=2$.
iii.

$$
\gamma_{S}\left(\operatorname{Cay}\left(\mathbb{Z}_{2^{n}}: S\right)\right)= \begin{cases}2 & \text { if } n=1,2, \\ 4 & \text { if } n \geq 3\end{cases}
$$

Proof. i. Let $H=\mathbb{Z}_{2^{n}} \backslash S$. Then $H=\{i: 2 \mid i\}$. It is not hard to see that H is a subgroup of $\mathbb{Z}_{2^{n}}$ and $\left[\mathbb{Z}_{2^{n}}: H\right]=2$. Hence, by Lemma 2.1, $\operatorname{Cay}\left(\mathbb{Z}_{2^{n}}: S\right)=K_{2^{n-1}, 2^{n-1}}$.
ii. By part i. $\operatorname{Cay}\left(\mathbb{Z}_{2^{n}}: S\right)$ is a complete bipartite graph. So

$$
\gamma\left(\operatorname{Cay}\left(\mathbb{Z}_{2^{n}}: S\right)\right)=2 .
$$

iii. The proof is straightforward by Theorem 2.3.

Corollary 2.5. For any integer $n>2$, there is a 2^{n-1}-regular graph Γ with 2^{n} vertices such that $\gamma_{S}(\Gamma)=4$.

Theorem 2.6. Let $\mathbb{Z}_{p^{n}}=\langle S\rangle$ (p odd prime) and $S=B\left(1, p^{n}\right)$. Then following statments hold:
i. Cay $\left(\mathbb{Z}_{p^{n}}: S\right)$ is a complete p-partite graph.
ii. $\gamma\left(\operatorname{Cay}\left(\mathbb{Z}_{p^{n}}: S\right)\right)=2$.
iii. $\gamma_{S}\left(\operatorname{Cay}\left(\mathbb{Z}_{p^{n}}: S\right)\right)=3$.

Proof. i. Let $H=\mathbb{Z}_{p^{n}} \backslash S$. Then $H=\{i: p \mid i\}$. H is a subgroup of $\mathbb{Z}_{p^{n}}$ and $|H|=p^{n}-\Phi\left(p^{n}\right)=p^{n-1}$. So $\left[\mathbb{Z}_{p^{n}}: H\right]=p$. Hence, by Lemma 2.1, $\operatorname{Cay}\left(\mathbb{Z}_{p^{n}}: S\right)$ is a complete p-partite graph of size p^{n-1}.
ii. Since $\operatorname{Cay}\left(\mathbb{Z}_{p^{n}}: S\right)$ is a complete p-partite graph, $D=\{a, b\}$ is a minimal dominating set where a, b are not in the same partition.
iii. Let $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{p^{n}}: S\right)$. Let $V(\Gamma)=\bigcup_{i=1}^{p} A_{i}$ where $A_{i}=\left\{v_{i j}: 1 \leq j \leq\right.$ $\left.p^{n-1}\right\}$. Define $f: V(\Gamma) \rightarrow\{-1,1\}$
$f\left(v_{i j}\right)= \begin{cases}-1 & \text { if } 1 \leq i \leq\left\lfloor\frac{p}{2}\right\rfloor-1 \text { and } 1 \leq j \leq\left\lceil\frac{p^{n-1}}{2}\right\rceil, \\ -1 & \text { if }\left\lfloor\frac{p}{2}\right\rfloor \leq i \leq p \text { and } 1 \leq j \leq\left\lfloor\frac{p^{n-1}}{2}\right\rfloor, \\ 1 & \text { otherwise. }\end{cases}$

Let $v \in \bigcup_{i=1}^{\left\lfloor\frac{p}{2}\right\rfloor-1} A_{i}$. So $\left|N(v) \cap V_{f}^{-}\right|=\frac{1}{2}\left(p^{n}-p^{n-1}-4\right)$. So $f[v]=$ $f(v)+4 \geq 3$. If $v \in \bigcup_{i=\left\lfloor\frac{p}{2}\right\rfloor}^{p} A_{i}$, then $\left|N(v) \cap V_{f}^{-}\right|=\frac{1}{2}\left(p^{n}-p^{n-1}-2\right)$. So $f[v]=f(v)+2 \geq 1$. Hence, f is a signed dominating function. Since $\left|V_{f}^{-}\right|=\frac{1}{2}\left(p^{n}-3\right), \omega(f)=3$. So $\gamma_{S}(\Gamma) \leq 3$. On the contrary, suppose $\gamma_{S}(\Gamma)<3$. So there is a γ_{S}-function g such that $\omega(g)<3$. So $\left|V_{g}^{-}\right|>\frac{1}{2}\left(p^{n}-3\right)$. Let $\left|V_{g}^{-}\right|=\frac{1}{2}\left(p^{n}-1\right)$. If $A_{i} \cap V_{g}^{-}=\emptyset$ for some $1 \leq i \leq p$, then $g[v]=1-p^{n-1}$ for every $v \in A_{i}$. Hence, $A_{i} \cap V_{g}^{-} \neq \emptyset$ for every $1 \leq i \leq p$. If $\left|A_{i} \cap V_{g}^{-}\right| \geq\left\lceil\frac{p^{n-1}}{2}\right\rceil$ for every $1 \leq i \leq p$, then $\left|V_{g}^{-}\right| \geq \frac{1}{2}\left(p^{n}+p\right)$. This is impossible. So there is $j \in\{1,2, \ldots, p\}$ such that $\left|A_{j} \cap V_{g}^{-}\right| \leq\left\lfloor\frac{p^{n-1}}{2}\right\rfloor$. Let $u \in A_{j} \cap V_{g}^{-}$. So $g[u]=\operatorname{deg}(u)+1-2\left|N(u) \cap V_{g}^{-}\right|<0$. This is contradiction. Therefore $\gamma_{S}(\Gamma)=3$.

Corollary 2.7. For every integer n, there is a $\left(p^{n}-p^{n-1}\right)$-regular graph Γ with p^{n} vertices such that $\gamma_{S}(\Gamma)=3$.

3. Cayley Graphs of Order $p q$

In this section p and q are distinct prime numbers where $p<q$. Let $B(1, p q)$ be a generator of $\mathbb{Z}_{p q}$. For $1 \leq i \leq p$ and $1 \leq j \leq q$, set

$$
A_{i}=\{i+k p: 0 \leq k \leq q-1\}
$$

and

$$
B_{j}=\left\{j+k^{\prime} q: 0 \leq k^{\prime} \leq p-1\right\}
$$

With these notations in mind we will prove the following results.
Lemma 3.1. Let $\mathbb{Z}_{p q}=\langle S\rangle$ and $S=B(1, p q)$. Then following statments hold.
i. $V\left(\operatorname{Cay}\left(\mathbb{Z}_{p q}: S\right)\right)=\bigcup_{i=1}^{p} A_{i}$ and $\operatorname{Cay}\left(\mathbb{Z}_{p q}: S\right)$ is a p-partite graph.
ii. $V\left(\operatorname{Cay}\left(\mathbb{Z}_{p q}: S\right)\right)=\bigcup_{j=1}^{q} B_{j}$ and $\operatorname{Cay}\left(\mathbb{Z}_{p q}: S\right)$ is a q-partite graph.
iii. Let $1 \leq i \leq p$. For any $x \in A_{i}$ there is some $1 \leq j \leq q$ such that $x \in B_{j}$.
iv. $\left|A_{i} \cap B_{j}\right|=1$ for every i, j.

Proof. i. Let $s \in V\left(C a y\left(\mathbb{Z}_{p q}: S\right)\right)$. If $p \mid s$, then $s \in A_{p}$. Otherwise, $s \in A_{i}$ where $s=k p+i$ for some $1 \leq k \leq(p-1)$. Thus $V\left(C a y\left(\mathbb{Z}_{p q}:\right.\right.$ $S))=\bigcup_{i=1}^{p} A_{i}$. Since $1 \leq i \neq j \leq p, A_{i} \cap A_{j}=\emptyset$. We show that the
induced subgraph on A_{i} is empty. Let $l+t \in E\left(\operatorname{Cay}\left(\mathbb{Z}_{p q}: S\right)\right)$. If $l, t \in A_{s}$ for some $1 \leq s \leq p$, then $l=s+k p, t=s+k^{\prime} p$. So $p \mid(l-t)$. This is impossible.
ii. The proof is likewise part i.
iii. Let $1 \leq i \leq p$ and let $x \in A_{i}$. If $x \leq q$, then $x \in B_{x}$. If not, $x=i+k p>q$ such that $1 \leq k \leq q-1$. Hence, $x \equiv t(\bmod q)$ where $1 \leq t \leq q$, and so $x \in B_{t}$.
iv. By Case iii and since $\left|A_{i}\right|=q$ and also for every $j \neq j^{\prime}, B_{j} \cap B_{j^{\prime}}=\emptyset$, the result reaches.

Theorem 3.2. [6] For any graph $\Gamma,\left\lceil\frac{n}{1+\Delta(\Gamma)}\right\rceil \leq \gamma(\Gamma) \leq n-\Delta(\Gamma)$ where $\Delta(\Gamma)$ is the maximum degree of Γ.

Theorem 3.3. Let $\mathbb{Z}_{p q}=\langle S\rangle$ and $S=B(1, p q)$. Then the following is hold.

$$
\gamma\left(\operatorname{Cay}\left(\mathbb{Z}_{p q}: S\right)\right)= \begin{cases}2 & p=2 \\ 3 & p>2\end{cases}
$$

Proof. Let $p=2$. By Lemma 3.1, $D=\{i, i+q\}$ is a dominating set. Since $\operatorname{Cay}\left(\mathbb{Z}_{p q}: S\right)$ is a $(q-1)$-regular graph, by Theorem 3.2, $\gamma\left(\operatorname{Cay}\left(\mathbb{Z}_{p q}: S\right)\right) \geq 2$. Thus $\gamma\left(\operatorname{Cay}\left(\mathbb{Z}_{p q}: S\right)\right)=2$.
Let $p>2$. We define $D=\{1,2, s\}$ where $s \in A_{1} \backslash N(2)$. Since 1,2 are adjacent,$N(1) \cup N(2)=V\left(C a y\left(\mathbb{Z}_{p q}: S\right)\right) \backslash D$. Thus D is a dominating set. As a consequence, $\gamma\left(\operatorname{Cay}\left(\mathbb{Z}_{p q}: S\right)\right) \leq 2$. It is enough to show that $\gamma\left(\operatorname{Cay}\left(\mathbb{Z}_{p q}: S\right)\right) \neq 2$. Let $D^{\prime}=\{x, y\}$. We show that D^{\prime} is not a dominating set. If $x, y \in A_{i}$ for some $1 \leq i \leq p$, then for every $z \in A_{i} \backslash D^{\prime}, z \notin N\left(D^{\prime}\right)$. If not, $x \in A_{i}$ and $y \in A_{j}$ for some $1 \leq i \neq j \leq p$. If x, y are adjacent, then there is $x^{\prime} \in A_{i} \backslash\{x\}$ such that $x^{\prime} \notin N(y)$. Thus D^{\prime} is not dominating set. If x and y are not adjacent, then there is $z \in A_{l}, l \neq i, j$, such that the induced subgraph on $\{x, y, z\}$ is empty. Hence, D^{\prime} is not a dominating set and the proof is completed.

Theorem 3.4. Let $\mathbb{Z}_{p q}=\langle S\rangle$ where $p \in\{2,3,5\}$ and $S=B(1, p q)$. Then

$$
\gamma_{S}\left(C a y\left(\mathbb{Z}_{p q}: S\right)\right)=p
$$

Proof. Let $A=\left\{1,1+p, \ldots, 1+\left(\left\lfloor\frac{q}{2}\right\rfloor-1\right) p\right\}$ and $B=\{i+t q: i \in A$ and $1 \leq$ $t \leq p-1\}$. We define $f: V\left(\operatorname{Cay}\left(\mathbb{Z}_{p q}: S\right)\right) \rightarrow\{-1,1\}$ such that

$$
f(x)= \begin{cases}-1 & x \in A \cup B \\ 1 & \text { otherwise }\end{cases}
$$

Let $v \in V\left(C a y\left(\mathbb{Z}_{p q}: S\right)\right)$. If $f(v)=-1$, then

$$
f[v]=-1+(p-1)(q-1)-2\left(\left(\left\lfloor\frac{q}{2}\right\rfloor-1\right)(p-1)\right)=2 p-3
$$

Otherwise,

$$
f[v]=1+(p-1)(q-1)-2\left\lfloor\frac{q}{2}\right\rfloor(p-1)=1
$$

Hence, f is a dominating function. Also

$$
\omega(f)=p q-2(|A|+|B|)=p q-2\left(\left\lfloor\frac{q}{2}\right\rfloor+(p-1)\left\lfloor\frac{q}{2}\right\rfloor\right)=p .
$$

It is enough to show that f has the minimal wait. Let, to the contrary, g be a dominating function and $\omega(g)<\omega(f)$. So $\left|V_{g}^{-}\right|>\left|V_{f}^{-}\right|$. Without lose of generality, suppose that $\left|V_{g}^{-}\right|=p\left\lfloor\frac{q}{2}\right\rfloor+1$. Let $A_{i}^{-}=A_{i} \cap V_{g}^{-}, A_{i}^{+}=A_{i} \backslash A_{i}^{-}$ and $B_{j}^{-}=B_{j} \cap V_{g}^{-}$. We will reach the contradiction by three steps.
Step 1. For every $1 \leq i \leq p, A_{i}^{-} \neq \emptyset$.
On the contrary, let $A_{s}^{-}=\emptyset$ for some $1 \leq s \leq p$. Let $u \in A_{s}$. Then by
Lemma 3.1, $u \in A_{s} \cap B_{t}$ for some $1 \leq t \leq q$. So

$$
g[u]=(p-1)(q-1)+1-2\left(\left|V_{g}^{-}\right|-\left|B_{t}^{-}\right|\right) \geq 1
$$

Thus $\left|B_{t}^{-}\right| \geq\left\lceil\frac{q}{2}\right\rceil$. Hence, $\left|V_{g}^{-}\right| \geq\left|A_{s}\right|\left\lceil\frac{q}{2}\right\rceil$. This imolies $q+(q-p)\left\lfloor\frac{q}{2}\right\rfloor<$ 1. This is a contradiction. Hence, $A_{s}^{-} \neq \emptyset$.

Similar argument applies for B_{j}. Therefore, $B_{j}^{-} \neq \emptyset$ for every $1 \leq j \leq$ q.
Step 2. For every $1 \leq i \leq p,\left|A_{i}^{-}\right| \geq\left\lfloor\frac{q}{2}\right\rfloor$.
On the contrary, Let $\left|A_{l}^{-}\right|<\left\lfloor\frac{q}{2}\right\rfloor$ for some $1 \leq l \leq p$. Without lose of generality suppose that $\left|A_{l}^{-}\right|=\left\lfloor\frac{q}{2}\right\rfloor-1$. Let $v \in A_{l}$. By Lemma 3.1, $v \in A_{l} \cap B_{k}$ for some $1 \leq k \leq q$. If $g(v)=-1$, then $g[v]=$ $(p-1)(q-1)-1-2\left(\left|V_{g}^{-}\right|-\left|A_{l}^{-}\right|-\left|B_{k}^{-}\right|+2\right) \geq 1$. Then $\left|B_{k}^{-} \backslash\{v\}\right| \geq 4$. If $g(v)=1$, then $\left|B_{k}^{-} \backslash\{v\}\right| \geq 2$. Hence, $\left|V_{g}^{-}\right| \geq 4\left|A_{l}^{-}\right|+\left|A_{l}^{-}\right|+2\left|A_{l}^{+}\right|$. As a consequence $p>8$. This is impossible.
Therefore, for every $1 \leq i \leq p,\left|A_{i}^{-}\right| \geq\left\lfloor\frac{q}{2}\right\rfloor$ and since $\left|V_{g}^{-}\right|=p\left\lfloor\frac{q}{2}\right\rfloor+1$, we may suppose that $\left|A_{1}^{-}\right|=\left\lceil\frac{q}{2}\right\rceil$ and $\left|A_{i}^{-}\right|=\left\lfloor\frac{q}{2}\right\rfloor$ for $2 \leq i \leq p$.
Step 3. For every $1 \leq j \leq q,\left|B_{j}^{-}\right| \geq\left\lceil\frac{p}{2}\right\rceil$.
On the contrary, let $\left|B_{h}^{-}\right|<\left\lceil\frac{p}{2}\right\rceil$ for some $1 \leq h \leq q$. Suppose that $\left|B_{h}^{-}\right|=\left\lfloor\frac{p}{2}\right\rfloor$. By Lemma 3.1, $B_{h} \cap A_{i} \neq \emptyset$ for any $1 \leq i \leq p$. Let $z \in B_{h}^{-} \cap A_{i}$. Thus

$$
\begin{aligned}
g[z] & =-1+(p-1)(q-1)-2\left(\left|V_{g}^{-}\right|-\left|A_{i}^{-}\right|-\left|B_{h}^{-}\right|+2\right) \\
& \leq-1+(p-1)(q-1)-2\left(p\left\lfloor\frac{q}{2}\right\rfloor+1-\left\lceil\frac{q}{2}\right\rceil-\left\lfloor\frac{p}{2}\right\rfloor+2\right) \\
& \leq p-6
\end{aligned}
$$

Since $p \in\{2,3,5\}, g[z] \leq-1$. This is a contradiction.
By Step $3,\left|V_{g}^{-}\right| \geq q\left\lceil\frac{p}{2}\right\rceil$. Hence, $p\left\lfloor\frac{q}{2}\right\rfloor+1 \geq q\left\lceil\frac{p}{2}\right\rceil$. So $p+q \leq 2$. This is impossible. Therefore $\gamma_{S}(\operatorname{Cay}(G: S))=\omega(f)=p$.

Theorem 3.5. Let $\mathbb{Z}_{p q}=\langle S\rangle$ where $p \geq 7$ and $S=B(1, p q)$. Then

$$
\gamma_{S}\left(C a y\left(\mathbb{Z}_{p q}: S\right)\right)=5
$$

Proof. We define $f: V\left(\operatorname{Cay}\left(\mathbb{Z}_{p q}: S\right)\right) \rightarrow\{-1,1\}$ such that $f(i)=-1$ if and only if $i \in\left\{1,2, \ldots, \frac{p q-5}{2}\right\}$. It is easily seen that $\left\lfloor\frac{q}{2}\right\rfloor \leq\left|A_{i}^{-}\right| \leq\left\lceil\frac{q}{2}\right\rceil$ for every $1 \leq i \leq p$. Also $\left\lfloor\frac{p}{2}\right\rfloor \leq\left|B_{j}^{-}\right| \leq\left\lceil\frac{p}{2}\right\rceil$ for any $1 \leq j \leq q$. Let $v \in A_{t} \cap B_{s}$ such that $1 \leq t \leq p$ and $1 \leq s \leq q$. In the worst situation, $\left|A_{t}^{-}\right|=\left\lfloor\frac{q}{2}\right\rfloor$ and $\left|B_{s}^{-}\right|=\left\lfloor\frac{p}{2}\right\rfloor$. In this case $1 \leq f[v] \leq 5$. Hence, f is a signed dominating function. Also $\omega(f)=p q-2\left|V_{f}^{-}\right|=5$. Thus $\gamma_{S}\left(\operatorname{Cay}\left(\mathbb{Z}_{p q}: S\right)\right) \leq 5$. What is left is to show that if g is a γ_{S}-function, then $\omega(g) \geq 5$. On the contrary, suppose that g be a γ_{S}-function and $\omega(g)<\omega(f)$. Hence, $\left|V_{g}^{-}\right|<\left|V_{f}^{-}\right|$. There is no loss of generality in assuming $\left|V_{g}^{-}\right|=\frac{p q-3}{2}$. Let $A_{i}^{-}=A_{i} \cap V_{g}^{-}$and $B_{j}^{-}=B_{j} \cap V_{g}^{-}$. In order to reach the contradiction we use two following steps:
Step 1. $A_{i}^{-} \neq \emptyset$ for every $1 \leq i \leq p$.
On the contrary, suppose that for some $1 \leq m \leq p, A_{m}^{-}=\emptyset$. Let $w \in A_{m}$. So there is $1 \leq \ell \leq q$ such that $w \in A_{m} \cap B_{\ell}$. Hence, $g[w]=$ $(p-1)(q-1)+1-2\left(\left|V_{g}^{-}\right|-\left|B_{\ell}^{-}\right|\right) \geq 1$. Thus $\left|B_{\ell}^{-}\right| \geq \frac{p+q-4}{2}$. So $\left|V_{g}^{-}\right| \geq$ $q\left(\frac{p+q-4}{2}\right)$. Hence, $p q-3 \geq q(p q-4)$. This makes a contradiction. By similar argument we have $B_{j}^{-} \neq \emptyset$ for every $1 \leq j \leq q$.
Step 2. For every $1 \leq i \leq p,\left|A_{i}^{-}\right| \geq\left\lfloor\frac{q}{2}\right\rfloor$.
On the contrary, let $\left|A_{l}^{-}\right|=\left\lfloor\frac{q}{2}\right\rfloor-1$. Let $v \in A_{l}$. There is $1 \leq l^{\prime} \leq q$ such that $v \in A_{l} \cap B_{l^{\prime}}$. If $g(v)=-1$, then $g[v]=(p-1)(q-1)+1-$ $2\left(\left|V_{g}^{-}\right|-\left|A_{l}^{-}\right|-\left|B_{l^{\prime}}^{-}\right|+2\right) \geq 1$. Hence, $\left|B_{l^{\prime}}^{-} \backslash\{v\}\right| \geq\left\lceil\frac{p}{2}\right\rceil$. If $g(v)=1$, then $\left|B_{l^{\prime}}^{-}\right| \geq\left\lfloor\frac{p}{2}\right\rfloor$. Therefore, $\left|V_{g}^{-}\right| \geq\left|A_{l}^{-}\right|\left(\left\lceil\frac{p}{2}\right\rceil+1\right)+\left|A_{l}^{+}\right|\left\lfloor\frac{p}{2}\right\rfloor$. This implies that $q \leq 3$. This is a contradiction.

Likewise Step $2,\left|B_{j}^{-}\right| \geq\left\lfloor\frac{p}{2}\right\rfloor$ for every $1 \leq j \leq q$. Since $\left|V_{g}^{-}\right|=\frac{p q-3}{2}$, there is $1 \leq k \leq p$ such that $\left|A_{k}^{-}\right|=\left\lfloor\frac{q}{2}\right\rfloor$. On the other hand, suppose that for $1 \leq t \leq q,\left|B_{l_{r}}^{-}\right|=\left\lfloor\frac{p}{2}\right\rfloor$. Let $u \in A_{k}^{-} \cap B_{s}^{-}$. If $s \in\left\{l_{1}, \cdots, l_{t}\right\}$, then

$$
\begin{aligned}
g[u] & =-1+(p-1)(q-1)-2\left(\left|V_{g}^{-}\right|-\left|A_{k}^{-}\right|-\left|B_{s}^{-}\right|+2\right) \\
& =-1+(p-1)(q-1)-2\left(\frac{p q-3}{2}-\left\lfloor\frac{q}{2}\right\rfloor-\left\lfloor\frac{p}{2}\right\rfloor+2\right) \\
& =-3 .
\end{aligned}
$$

This is a contradiction by g is a signed dominating function. Hence, s is not in $\left\{l_{1}, \cdots, l_{t}\right\}$. Since $\left|A_{k}^{-}\right|=\left\lfloor\frac{q}{2}\right\rfloor, q-t \geq\left\lfloor\frac{q}{2}\right\rfloor$ and so $t \leq\left\lceil\frac{q}{2}\right\rceil$. As a consequence,

$$
\left|V_{g}^{-}\right| \geq t\left\lfloor\frac{p}{2}\right\rfloor+(q-t)\left\lceil\frac{p}{2}\right\rceil \geq\left\lceil\frac{q}{2}\right\rceil\left\lfloor\frac{p}{2}\right\rfloor+\left\lfloor\frac{q}{2}\right\rfloor\left\lceil\frac{p}{2}\right\rceil .
$$

Since $\left|V_{g}^{-}\right|=\frac{p q-3}{2}$, this makes a contradiction. Therefore,

$$
\gamma_{S}\left(\operatorname{Cay}\left(\mathbb{Z}_{p q}: S\right)\right)=5
$$

Corollary 3.6. For any k-regular graph Γ on n vertices $\gamma_{S}(\Gamma) \geq \frac{n}{k+1}$. Hence, $\gamma_{S}(\Gamma) \geq 1$. It is easy to check that $\gamma_{S}(\Gamma)=1$ if and only if Γ is a complete
graph and n is odd. Furthermore, for any prime numbers $p<q$, there is a $(p-1)(q-1)$-regular graph Γ with $p q$ vertices such that $\gamma_{S}(\Gamma) \in\{2,3,5\}$.

Acknowledgments

The author is thankful of referees for their valuable comments.

References

1. S. Alikhani, On the Domination Polynomials of non P_{4}-Free Graphs, Iranian Journal of Mathematical Sciences and Informatics, 8(2), (2013), 49-55.
2. J. E. Dunbar, S. T. Hedetniemi, M. A. Henning, P. J. Slater, Signed Domination in Graphs, Graph Theory, Combinatorics, and Applications, 1, (1995), 311-322.
3. O. Favaron, Signed Domination in Regular Graphs. Discrete Mathematics, 158(1), (1996), 287-293.
4. R. Haas, T. B. Wexler, Bounds on the Signed Domination Number of a Graph, Electron. Notes Discrete Math., 11, (2002), 742-750.
5. R. Haas, T. B. Wexler, Signed Domination Numbers of a Graph and its Complement, Discrete mathematics, 283(1), (2004), 87-92.
6. T. W. Haynes, S. Hedetniemi, P. Slater, Fundamentals of Domination in Graphs, CRC Press; 1998 Jan 5.
7. M. A. Henning, P. J. Slater, Inequalities Relating Domination Parameters in Cubic Graphs, Discrete Mathematics. 158(1), (1996), 87-98.
8. S. Klavžar, G. Košmrlj, S. Schmidt, On the Computational Complexity of the Domination Game, Iranian Journal of Mathematical Sciences and Informatics, 10(2), (2015), 115-122.
9. A. Meir, J. Moon, Relations Between Packing and Covering Numbers of a Tree, Pacific Journal of Mathematics. 61(1), (1975), 225-233.
10. P. Pavlič, J. Žerovnik, A Note on the Domination Number of the Cartesian Products of Paths and Cycles, Kragujevac Journal of Mathematics,37(2), (2013), 275-285.
11. L. Volkmann, B. Zelinka, Signed Domatic Number of a Graph, Discrete applied mathematics, 150(1), (2005), 261-267.
12. B. Zelinka, Some Remarks on Domination in Cubic Graphs, Discrete Mathematics, 158(1), (1996), 249-255.
13. B. Zelinka, Signed and Minus Domination in Bipartite Graphs, Czechoslovak Mathematical Journal, 56(2), (2006), 587-590.

[^0]: * Corresponding Author

 Received 20 April 2016; Accepted 14 January 2017
 © 2019 Academic Center for Education, Culture and Research TMU

